## Week 9, Day 3 <br> Co-ordinates

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. Start by reading through the Learning Reminders. They come from our PowerPoint slides.

2. Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Have I mastered the topic? A few questions to Check your understanding. Fold the page to hide the answers!

How many times must Dan multiply 0.048 by 10 to get 48,000?
$\qquad$

What number is one hundred times smaller than 0.4 ?

## Learning Reminders



## Learning Reminders



## Learning Reminders



## Learning Reminders

Plot points and draw polygons in all 4 quadrants.

Sketch the shape (not the grid) and label the co-ordinates of its vertices...

How do you remember which order to plot and read coordinates?

## Practice Sheet for All Hunt the vertices

All the points shown are vertices of different quadrilaterals that fit on the $6 \times 6$ arid, but some c


Plot any missing vertices in each shape. Write their co-ordinates.
Use a ruler to draw each quadrilateral.

1. The square with vertices $A, B, C$ and ?
2. The rectangle with vertices $D, E, F$ and?
3. The square with vertices $D, G$ and ? And?
4. The trapezium with a long side measuring 4 squares, and vertices E, F, G and?
5. The parallelogram with vertices K, L, M and ?
6. One of the three possible parallelograms with vertices $\mathrm{H}, \mathrm{I}, \mathrm{J}$ and ?
7. The rectangle with vertices $A, H, M$ and?
8. The isosceles trapezium with vertices J, K, L and ?

## Hot: Have a go at this Challenge too!

## Challenge

(a) What is the perimeter of the square in (3)?
(b) Draw the diagonals in the parallelogram drawn in (5).

What are the co-ordinates of the point where these cross?
(c) Draw five different types of quadrilateral on a similar $6 \times 6$ grid and write the co-ordinates of each one.

## Practice Sheet for All Hunt the vertices



## Practice Sheet Answers

## Hunt the vertices

1. The square with vertices $A, B, C$ and $(-2,1)$
2. The rectangle with vertices $D, E, F$ and $(1,2)$
3. The square with vertices $D, G$ and $(1,0)$ And $(6,0)$
4. The trapezium with a long side measuring 4 squares, and vertices $E, F, G$ and $(6,1)$
5. The parallelogram with vertices $K, L, M$ and $(6,-1)$
6. One possible parallelogram has a fourth vertex $H, I, J$ and $(-5,-5)$ another has a fourth vertex $(-5,-1)$ and the other ( $1,-3$ )
7. The rectangle with vertices $A, H, M$ and $(5,4)$
8. The isosceles trapezium with vertices $J, K$, $L$ and $(-4,3)$

## Challenge

(a) The perimeter of the square in (3) is 20 squares.
(b) The diagonals cross at $(3.5,-2)$

## Work in pairs

Things you will need:

- A grid
- Coloured pencils


## A Bit Stuck? Walk then fly!

## What to do:

- Sit back to back.
- Choose a coloured pencil.

Use it to draw a triangle on your grid.

- Tell your partner the colour pencil you chose. Call out the co-ordinates of the points of your triangle to your partner.
They draw the points, then join them to make a triangle using the same coloured pencil.
- Now compare your triangles.

Are they the same?
If so, you both score 3 points.
If not, you score 1 point for each matching
 point.

- Swap roles and repeat using a different coloured pencil.

S-t-r-e-t-c-h:
Move one of your triangles up by two squares. Record the new co-ordinates.

## Learning outcomes:

- I can use co-ordinates in the first quadrant.
- I am beginning to work out new co-ordinates after a translation.



## Check your understanding Questions

If joined in the order given, with straight lines, each of these sets of coordinates are the corners of a polygon. Without drawing a co-ordinate grid and plotting the points, can you identify the shape? Be as specific as you can!
(a) $(2,1)(2,5)(6,1)(6,5)$
(b) $(1,1)(5,1)(3,6)$
(c) $(-1,-1)(-1,-3)(-3,0)(-5,-2) \quad(-3,-4)$

Now plot each set of co-ordinates and join them in the order given to create each shape to check your answers.

## Check your understanding

## Answers

If joined in the order given, with straight lines, each of these sets of coordinates are the corners of a polygon. Without drawing a co-ordinate grid and plotting the points, can you identify the shape? Be as specific as you can!

## (a) $(2,1)(2,5)(6,1)(6,5)$

It's a quadrilateral as it has 4 vertices.
The difference between both the $x$ - and $y$-values of the pairs of coordinates is 4 (6-2 and 5-1). This means that the 4 sides are the same length - the shape is a square.
(b) $(1,1)(5,1)(3,6)$

It's a triangle. It has a horizontal side as two of the vertices have a $y$-value of 1. The third vertex is half-way between the other two (its x-value of 3 is half way between 1 and 5), making this an isosceles triangle.
(c) $(-1,-1)(-1,-3)(-3,0)(-5,-2) \quad(-3,-4)$

It's a pentagon, having 5 vertices. It sits in the $3^{\text {rd }}$ quadrant, as all co-ordinate values are negative. One vertex sits on the $x$-axis, having a $y$-value of zero. Two pairs of co-ordinates are vertically in line with one another as they share the same $x$-value: $(-1,-1)$ and $(-1,-3) ;(-3,0)$ and $(-3,-4)$.

Now plot each set of co-ordinates and join them in the order given to create each shape to check your answers.
Look for accurately plotted shapes. Common misconceptions include plotting $x$ and $y$ values in the wrong order, and becoming confused with the negative co-ordinates in example (c).


