Week 9, Day 3

Co-ordinates

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. Start by reading through the **Learning Reminders**. They come from our *PowerPoint* slides.

Tackle the questions on the Practice Sheet.
 There might be a choice of either Mild (easier) or Hot (harder)!
 Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Have I mastered the topic? A few questions to **Check your understanding.**

Fold the page to hide the answers!

Practice Sheet for All

Hunt the vertices

All the points shown are vertices of different quadrilaterals that fit on the 6 x 6 grid, but some c

Plot any missing vertices in each shape. Write their co-ordinates. Use a ruler to draw each quadrilateral.

- 1. The square with vertices A, B, C and?
- 2. The rectangle with vertices D, E, F and ?
- 3. The square with vertices D, G, and ? And ?
- 4. The trapezium with a long side measuring 4 squares, and vertices E, F, G and ?
- 5. The parallelogram with vertices K, L, M and ?
- 6. One of the three possible parallelograms with vertices H, I, J and ?
- 7. The rectangle with vertices A, H, M and ?
- 8. The isosceles trapezium with vertices J, K, L and ?

Hot: Have a go at this Challenge tool

Challenge

- (a) What is the perimeter of the square in (3)?
- (b) Draw the diagonals in the parallelogram drawn in (5). What are the co-ordinates of the point where these cross?
- (c) Draw five different types of quadrilateral on a similar 6 x 6 grid and write the co-ordinates of each one.
- © Hamilton Trust Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

Practice Sheet for All

Hunt the vertices

Practice Sheet Answers

Hunt the vertices

- 1. The square with vertices A, B, C and (-2, 1)
- 2. The rectangle with vertices D, E, F and (1, 2)
- 3. The square with vertices D, G and (1, 0) And (6, 0)
- 4. The trapezium with a long side measuring 4 squares, and vertices E, F, G and (6, 1)
- 5. The parallelogram with vertices K, L, M and (6, -1)
- 6. One possible parallelogram has a fourth vertex H, I, J and (-5, -5) another has a fourth vertex (-5, -1) and the other (1, -3)
- 7. The rectangle with vertices A, H, M and (5, 4)
- 8. The isosceles trapezium with vertices J, K, L and (-4, 3)

Challenge

- (a) The perimeter of the square in (3) is 20 squares.
- (b) The diagonals cross at (3.5, -2)

A Bit Stuck? Walk then fly!

Work in pairs

Things you will need:

- A grid
- Coloured pencils

What to do:

- Sit back to back.
- Choose a coloured pencil.
 Use it to draw a triangle on your grid.
- Tell your partner the colour pencil you chose.
 Call out the co-ordinates of the points of your triangle to your partner.
 They draw the points, then join them to make a triangle using the same coloured pencil.

S-t-r-e-t-c-h:

Move one of your triangles up by two squares. Record the new co-ordinates.

Learning outcomes:

- I can use co-ordinates in the first quadrant.
- I am beginning to work out new co-ordinates after a translation.

© Hamilton Trust

Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

A Bit Stuck? Walk then fly!

Check your understanding

Questions

If joined in the order given, with straight lines, each of these sets of coordinates are the corners of a polygon. Without drawing a co-ordinate grid and plotting the points, can you identify the shape? Be as specific as you can!

- (a) (2,1) (2,5) (6,1) (6,5) (b) (1,1) (5,1) (3,6)
- (b) (1,1) (5,1) (3,6)

(c)
$$(-1, -1)$$
 $(-1, -3)$ $(-3, 0)$ $(-5, -2)$ $(-3, -4)$

Now plot each set of co-ordinates and join them in the order given to create each shape to check your answers.

Fold here to hide answers

Check your understanding

Answers

If joined in the order given, with straight lines, each of these sets of coordinates are the corners of a polygon. Without drawing a co-ordinate grid and plotting the points, can you identify the shape? Be as specific as you can!

(a) (2,1) (2,5) (6,1) (6,5)

It's a quadrilateral as it has 4 vertices.

The difference between both the x- and y-values of the pairs of coordinates is 4 (6 - 2 and 5 - 1). This means that the 4 sides are the same length – the shape is a square.

(b) (1,1) (5,1) (3,6)

It's a triangle. It has a **horizontal** side as **two** of the vertices have a y-value of 1. The third vertex is half-way between the other two (its x-value of 3 is half way between 1 and 5), making this an isosceles triangle.

(c)
$$(-1, -1)$$
 $(-1, -3)$ $(-3, 0)$ $(-5, -2)$ $(-3, -4)$

It's a pentagon, having 5 vertices. It sits in the 3^{rd} quadrant, as all co-ordinate values are negative. One vertex sits on the x-axis, having a y-value of zero. Two pairs of co-ordinates are vertically in line with one another as they share the same x-value: (-1,-1) and (-1,-3); (-3,0) and (-3,-4).

Now plot each set of co-ordinates and join them in the order given to create each shape to check your answers.

Look for accurately plotted shapes. Common misconceptions include plotting x and y values in the wrong order, and becoming confused with the negative co-ordinates in example (c).

