Week 9, Day 5 Reflections

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. If possible, watch the **PowerPoint presentation** with a teacher or another grown-up.

OR start by carefully reading through the Learning Reminders.

- Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)! Check the answers.
- 3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

 Have I mastered the topic? A few questions to Check your understanding.
 Fold the page to hide the answers!

tify the value of the '4' in the following numbers:
3.407
4.821
0.043
5.104
48,739
many times must Dan multiply 0.048 by 10 to get 48,000?
t number is one hundred times smaller than 0.4?

Learning Reminders

Learning Reminders

© Hamilton Trust

Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

Learning Reminders

Look at each quadrilateral and write its name. Write its co-ordinates.

- 1. Reflect shapes A then B in the y-axis. Write the co-ordinates of the reflected shapes.
- 2. Reflect shapes C then D in the x-axis. Write the co-ordinates of the reflected shapes.

Challenge

Draw a quadrilateral with no right angles and no parallel sides.

 \wedge

Write its co-ordinates.

Write the co-ordinates the shape will have after being reflected in the y-axis. Reflect the shape in the y-axis.

 \bigcirc

Were your co-ordinates correct?

© Hamilton Trust

Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

 \wedge

 \bigcirc

 \bigcirc

Practice Sheet Hot Reflecting quadrilaterals

Plot each quadrilateral and its image. Write down the co-ordinates of the vertices of the image.

	Shape	Co-ordinates of vertices	Reflected in	Co-ordinates of vertices of image
	Square	A (-7, 2) B (-5, 2) C (-7, 0) D (-5, 0)	x-axis	A(,) B(,) C(,) D(,)
	Rectangle	E (-9, 9) F (-4, 9) G (-9, 7) H (-4, 7)	y-axis	E(,) F(,) G(,) H(,)
	Rhombus	I (-4, 2) J (-2, 3) K (-2, 1) L (0, 2)	x-axis then y-axis	I(,) J(,) K(,) L(,)
	Parallelogram	M (-5, 4) N (-4, 6) O (-2, 4) P (-1, 6)	y-axis then x-axis	M(,) N(,) O(,) P(,)
-3	Trapezium	Q (-9, 3) R (-8, 6) S (-7, 6) T (-6, 3)	x-axis then y-axis	Q(,) R(,) S(,) T(,)
-6	Kite	U (-3, 8) V (-2, 9) W(-2, 6) X (-1, 8)	y-axis then x-axis	U(,) V(,) W(,) X(,)
© Hamilton Trust Exp	Nore more Hamilta	n Trust Learning	Materials at https:	://wrht.org.uk/hami

Practice Sheets Answers

Reflected quadrilaterals (mild)

0

```
A Quadrilateral

(-2, 5), (-2, 9), (-6, 5) (-7, 10)

Reflection in y-axis: (2, 5), (2, 9), (6, 5), (7, 10)

B Square

(1, 1), (1, 4), (4, 1), (4, 4)

Reflection in y-axis: (-1, 1), (-1, 4), (-4, 1), (-4, 4)

C Trapezium

(5, -1), (10, -1), (6, -4), (9, -4)

Reflection in x-axis: (5, 1), (10, 1), (6, 4), (9, 4)

D Rectangle

(-6, -1), (-6, -3), (-10, -1), (-10, -3)

Reflection in x-axis: (-6, 1), (-6, 3), (-10, 1), (-10, 3)
```

 \bigcirc

Reflecting quadrilaterals (hot)

Shape	Co-ordinates of vertices	Reflected in	Co-ordinates of vertices of image
Square	A (-7, 2) B (-5, 2) C (-7, 0) D (-5, 0)	x-axis	A (-7, -2) B (-5, -2) C (-7, 0) D (-5, 0)
Rectangle	E (-9, 9) F (-4, 9) G (-9, 7) H (-4, 7)	y-axis	E (9, 9) F (4, 9) G (9, 7) H (4, 7)
Rhombus	l (-4, 2) J (-2, 3) K (-2, 1) L (0, 2)	x-axis then y-axis	l (4, -2) J (2, -3) K (2, -1) L (0, -2)
Parallelogram	M (-5, 4) N (-4, 6) O (-2, 4) P (-1, 6)	y-axis then x-axis	M (5, -4) N (4, -6) O (2, -4) P (1, -6)
Trapezium	Q (-9, 3) R (-8, 6) S (-7, 6) T (-6, 3)	x-axis then y-axis	Q (9, -3) R (8, -6) S (7, -6) T (6, -3)

 \wedge

© Hamilton Trust

Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

 \wedge

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

- Describe what happens to the co-ordinates this time...
- Repeat for the triangle and trapezium.

© Hamilton Trust

Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

Check your understanding Questions

A rectangle is reflected in the x-axis. Its co-ordinates are now: (2, -1), (7, -1), (2, -6) and (7, -6). Draw it in its original position.

A triangle is reflected in the y-axis. Its co-ordinates are now: (2, 0) (5, 2) and (3, 7). Draw it in its original position.

(0,0) (5,0) (5,5) (0,5) is a shape.When it is reflected in the y-axis, two pairs of co-ordinates do not change. Why not?Sketch it to explain.

Fold here to hide answers

Check your understanding Answers

A rectangle is reflected in the x-axis. Its co-ordinates are now: (2, -1), (7, -1), (2, -6) and (7, -6). Draw it in its original position. (2, 1), (7, 1), (2, 6) and (7, 6). Originally it must have been in the first quadrant. The x values are unaffected by the reflection.

A triangle is reflected in the y-axis. Its co-ordinates are now: (2,0) (5,2) and (3,7). Draw it in its original position.

(-2, 0) (-5, 2) and (-3, 7). Originally it must have been in the 2^{nd} quadrant (on the left of the y-axis above the x-axis). The y- values are unchanged by the reflection.

(0,0) (5,0) (5,5) (0,5) is a shape.

When it is reflected in the y-axis, two pairs of co-ordinates do not change. Why not? (0,0) and (0,5) do not move as they are located on the y-axis itself.

Sketch it to explain. As before, look for accurately plotted shapes.

